SYLLABUS

1. Number and Name: 11:127:494 – LAND & WATER RESOURCE ENGINEERING

2. Credits and contact hours: 3 credits, 2-80 minute lecture periods per week

3. Instructor: Christopher G. Uchrin

5. Specific Course Information:
 b. Prerequisites: Permission of instructor
 c. Course Type: Technical elective

6. Course Goals:

 a. Specific Instructional Outcomes: Students will be versed in the principles of groundwater hydrology and pollution. Student problem solving skills will be enhanced through the use of homework projects and an engineering project involving considerable analytical and numerical skills.

 b. Specific Student Outcomes addressed by the course include:

 e. Ability to identify, formulate and solve engineering problems
 Instructional Activity: Successful completion of design project focused on surface water pollution application
 Assessment Activity: Individual grading of student projects focused on:
 1. Theoretical development and application
 2. Technical accuracy
 3. Conclusions
 4. Presentation

 g. Ability to communicate effectively
 Instructional Activity: Successful completion of design project focused on surface water pollution application
 Assessment Activity: Individual grading of student projects
k. Ability to use techniques, skills and modern engineering tools necessary for engineering practice

Instructional Activity: Successful completion of design project and homework assignments incorporating advanced mathematical (computer) modeling techniques focused on surface water quality

Assessment Activity: Individual grading of student projects and homework assignments focused on using advanced engineering tools specifically for technical accuracy and visuals

7. Topics

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Introduction; Hydrologic cycle; Global water budget – Simple systems modeling; Composite hydrologic systems; Conceptual hydrogeologic models; Evaporation, transpiration, and runoff</td>
</tr>
<tr>
<td>1-4</td>
<td>Fundamentals of groundwater pollution</td>
</tr>
<tr>
<td>4</td>
<td>Groundwater hydraulics; Fluid statics; Piezometers; Principles of mass and energy conservation; Continuity equation; Bernoulli’s equation</td>
</tr>
<tr>
<td>5-8</td>
<td>Fundamentals of groundwater hydrology; Classification of subsurface waters, aquifers; Aquifer parameters; Groundwater movement</td>
</tr>
<tr>
<td>9-10</td>
<td>Fundamentals of mathematical models; Types of models; Batch systems; Flow systems; Dispersion; Multi-dimensional systems; Finite difference solution techniques</td>
</tr>
</tbody>
</table>

Exam 1

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Groundwater chemistry</td>
</tr>
<tr>
<td>14-17</td>
<td>Mathematics of groundwater hydrology; Pore velocity; Darcy’s Law; Groundwater diffusion equation; 2-dimensional movement; Wells; Dupuit’s assumptions; Applications</td>
</tr>
<tr>
<td>18-23</td>
<td>Pollutant transport through porous media; Adsorption/desorption; Isotherms and equilibrium conditions; Hysteresis; Microbial transformations; Multi-dimensional systems</td>
</tr>
</tbody>
</table>

Exam 2

24-26 Unsaturated systems

Grading:

- Homework 25%
- Exam 1 20%
- Exam 2 20%
- Project 35%

Prepared by: Christopher Uchrin 05/25/17